Extract Elements from SLiM's output() for genomes

slim_extract_genome(
  output,
  type = c("mutations", "genomes", "full"),
  join = TRUE,
  expand_mutations = FALSE
)

Arguments

output

A character vector where each element is the result of a call to genomes.output() in SLiM

type

Which type of data to return: "mutations", or "genomes" or both.

join

If asking for multiple output type, should they be joined into one tibble (join = TRUE) or left as separate tibbles returned in a list (join = FALSE)?

expand_mutations

If asking for "genomes" output, should mutations be expanded into their own column (expand_mutations = TRUE) or left as a vector of mutation ids in a list column (expand_mutations = FALSE)?

Value

A tibble

Examples

if(slim_is_avail()) {
  test_sim <- slim_script(
    slim_block_init_minimal(mutation_rate = 1e-6),
    slim_block_add_subpops(1, 100),
    slim_block(1, 20, late(), {
      r_output(p1.genomes.output(), "out", do_every = 10)
    })
  ) %>%
    slim_run()
  slim_extract_genome(test_sim$output_data, type = "mutations")
}
#> 
#> 
#> Simulation finished with exit status: 0
#> 
#> Success!
#> # A tibble: 180 × 11
#>    generation mut_id unique_mut_id mut_type chrome_pos selection dominance
#>         <int>  <int>         <int> <chr>         <int>     <dbl>     <dbl>
#>  1         10      7            15 m1            80276         0       0.5
#>  2         10      9            17 m1            36010         0       0.5
#>  3         10     34            30 m1            33892         0       0.5
#>  4         10      5            36 m1            90917         0       0.5
#>  5         10     65            40 m1            70995         0       0.5
#>  6         10     32            46 m1            22935         0       0.5
#>  7         10     33            47 m1            29872         0       0.5
#>  8         10      0            48 m1            34994         0       0.5
#>  9         10     54            49 m1            60144         0       0.5
#> 10         10      1            51 m1            73426         0       0.5
#> # ℹ 170 more rows
#> # ℹ 4 more variables: subpop <chr>, first_gen <int>, prevalence <int>,
#> #   nucleotide <chr>